High-Dimensional Chaos in dissipative and Driven Dynamical Systems
نویسندگان
چکیده
Studies of nonlinear dynamical systems with many degrees of freedom show that the behavior of these systems is significantly different as compared with the behavior of systems with less than two degrees of freedom. These findings motivated us to carry out a survey of research focusing on the behavior of high-dimensional chaos, which include onset of chaos, routes to chaos, and the persistence of chaos. This paper reports on various methods of generating and investigating nonlinear, dissipative and driven dynamical systems that exhibit high-dimensional chaos, and reviews recent results in this new field of research. We study high-dimensional Lorenz, Duffing, Rössler and Van der Pol oscillators, modified canonical Chua’s circuits, and other dynamical systems and maps, and we formulate general rules of high-dimensional chaos. Basic techniques of chaos control and synchronization developed for high-dimensional dynamical systems are also reviewed.
منابع مشابه
CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملRoutes to chaos in high-dimensional dynamical systems: A qualitative numerical study
This paper examines the most probable route to chaos in high-dimensional dynamical systems function space (time-delay neural networks) endowed with a probability measure in a computational setting . The most probable route to chaos (relative to the measure we impose on the function space) as the dimension is increased is observed to be a sequence of Neimark-Sacker bifurcations into chaos. The a...
متن کاملOn Generating Chaotic Dynamics in Nolinear Vibrating Systems
The paper is aimed at demonstrating the mechanism triggering chaotic phenomena in nonlinear dynamical systems, i.e. the formation of nonattracting invariant chaotic sets (chaotic saddles), which originates from the global bifurcations. Characteristic examples of the resulting chaotic system behaviors, such as chaotic transient motions, fractal basin boundaries and an unpredictability of the fin...
متن کاملNonintegrability, chaos, and complexity
Two dimensional driven-dissipative flows are generally integrable via a conservation law that is singular at equilibria. Nonintegrable dynamical systems are confined to n≥3 dimensions. Even driven-dissipative deterministic dynamical systems that are critical, chaotic or complex have n-1 local time-independent conservation laws that can be used to simplify the geometric picture of the flow over ...
متن کاملNumerical algorithms for stationary statistical properties of dissipative dynamical systems
It is well-known that physical laws for large chaotic dynamical systems are revealed statistically. The main concern of this manuscript is numerical methods for dissipative chaotic infinite dimensional dynamical systems that are able to capture the stationary statistical properties of the underlying dynamical systems. We first survey results on temporal and spatial approximations that enjoy the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 19 شماره
صفحات -
تاریخ انتشار 2009